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Introduction

Several neuroimaging studies support the model of abnor-
mal development of brain connectivity in patients with 
 autism-spectrum disorder (ASD)1 and specifically support 
the hypothesis of reduced brain functional integration 
(under connectivity) in autistic patients.2,3 Just and col-
leagues4 claimed that the autistic behaviour agrees with the 
reduced frontoposterior functional connectivity that has 
been observed in many fMRI studies. These authors pro-
posed that these findings can be explained by a reduction in 
communication bandwidth between the frontal and pos-
terior areas in patients with ASD. Frith5 hypothesized that 
several behavioural and neural characteristics that are pres-
ent in autistic patients are associated with a limited capacity 
of the frontal cortex to modulate sensory processing in the 
posterior areas. Reduced functional connectivity between the 
superior temporal sulcus and other brain regions in patients 
with autism has been found to be correlated with action and 

social perception deficits.6–8 In contrast, overconnectivity in 
short-range networks has also been found in functional im-
aging9 and histological postmortem studies.10 These postmor-
tem studies suggest that mini-columnar structures are more 
densely packed in patients with ASD and may be associated 
with increased intracortical connectivity. It has been hypothe-
sized that an abnormal pruning of synapses during later 
stages of development occurs in patients with ASD.5 Deficits 
in local pruning might result in anatomic overconnectivity 
that may affect the efficiency of intracortical communication. 
Additionally, Frith5 postulated that the brain enlargement in 
patients with ASD is associated with abnormal connectivity, 
which may be due to the lack of pruning.

Complementary to functional integration, functional segre-
gation is also a key feature for describing the organization of 
brain networks. Rubinov and Sporns11 defined functional 
segregation as “the ability for specialized processing to occur 
within densely interconnected groups of brain regions” (i.e., 
neuronal processing distributed across functionally related 
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Background: Several neuroimaging studies support the model of abnormal development of brain connectivity in patients with autism-
spectrum disorders (ASD). In this study, we aimed to test the hypothesis of reduced functional network segregation in autistic patients 
compared with controls. Methods: Functional MRI data from children acquired under a resting-state protocol (Autism Brain Imaging Data 
Exchange [ABIDE]) were submitted to both fuzzy spectral clustering (FSC) with entropy analysis and graph modularity analysis. Results: 
We included data from 814 children in our analysis. We identified 5 regions of interest comprising the motor, temporal and occipito-
temporal cortices with increased entropy (p < 0.05) in the clustering structure (i.e., more segregation in the controls). Moreover, we noticed 
a statistically reduced modularity (p < 0.001) in the autistic patients compared with the controls. Significantly reduced eigenvector cen-
trality values (p < 0.05) in the patients were observed in the same regions that were identified in the FSC analysis. Limitations: There is 
considerable heterogeneity in the fMRI acquisition protocols among the sites that contributed to the ABIDE data set (e.g., scanner type, 
pulse sequence, duration of scan and resting-state protocol). Moreover, the sites differed in many variables related to sample character-
ization (e.g., age, IQ and ASD diagnostic criteria). Therefore, we cannot rule out the possibility that additional differences in functional 
network organization would be found in a more homogeneous data sample of individuals with ASD. Conclusion: Our results suggest 
that the organization of the whole-brain functional network in patients with ASD is different from that observed in controls, which implies 
a reduced modularity of the brain functional networks involved in sensorimotor, social, affective and cognitive processing.
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regions organized in modules).12 These modules are defined 
as communities with highly dense connectivity among nodes 
of the same community and low communication with nodes 
of other communities.12 Some fMRI studies have investigated 
the establishment of functional segregation throughout typi-
cal neurodevelopment13 and possible deviations.14 Using a 
facial emotional processing task, Rudie and colleagues15 
observed reduced segregation between the amygdala and the 
dorsolateral prefrontal cortex and also between the right in-
ferior frontal gyrus (pars opercularis) and the ventromedial 
prefrontal cortex in patients with ASD.

Graph theory is a mathematical framework that was de-
veloped to explain and describe network organizations. Thus, 
elements of graph theory are suitable tools for investigations 
of both functional integration and segregation.11 One measure 
that is used to quantify global functional segregation is the 
modularity coefficient, which captures the network organiza-
tions of cluster/modules. The occurrence of clusters in brain 
functional networks is an indication of the segregation of 
neural processing. Many studies have investigated measures 
from graph theory to enhance the comprehension of the neur al 
basis of psychiatric disorders.12,16 However, few studies have 
explored segregation in patients with ASD via the use of 
graph theory and neuroimaging. Shi and colleagues17 ex-
plored changes in brain network metrics (based on the struc-
tural covariance of cortical thickness) between autistic chil-
dren and controls. They found reduced network modularity 
in children with autism and greater intermodule connectiv-
ity; however, the correlation between the frontotemporal 
and frontoparietal regions was impaired. You and col-
leagues18 found an atypical modulation of functional connec-
tivity that was induced by cognitive tasks. They applied 
metrics of global efficiency and modularity and showed that 
children with ASD exhibited an abnormal pattern of func-
tional connectivity of the frontal and parietal regions and 
other brain regions during the transition from an uncon-
strained to a sustained attentional state.

In the present study, we aimed to test the hypothesis that 
intrinsic functional network segregation is reduced in autistic 
patients compared with healthy controls. Functional MRI data 
acquired under a resting-state protocol19 (Autism Brain Imag-
ing Data Exchange [ABIDE] database) were submitted to both 
fuzzy spectral clustering (FSC) with entropy analysis and 
graph modularity analysis. Because we expected disruptions 
of network development in patients with autism, we hypothe-
sized that they would exhibit increased entropy in the cluster-
ing analysis and reduced modularity compared with controls.

Methods

To test our hypothesis of reduced intrinsic functional net-
work segregation in autistic patients relative to healthy con-
trols, we developed an FSC algorithm combined with a 
 Shannon entropy analysis to identify the regions that were 
more segregated in the patients with ASD than in the con-
trols. Then, to confirm the results obtained in the previous 
analysis, we calculated the modularity of the entire brain. 
Moreover, we contrasted between groups the importance 

hierarchies (i.e., eigenvector centralities) of the regions identi-
fied in the combined FSC–Shannon entropy analysis.

Functional MRI data set

We downloaded a large resting-state fMRI data set composed 
of controls and children with ASD from the ABIDE Consor-
tium website (http://fcon_1000.projects.nitrc.org/indi 
/abide/). The research performed at the ABIDE contributing 
sites complied with Health Insurance Portability and Accountabil-
ity Act (HIPAA) guidelines and the 1000 Functional Connec-
tomes Project/International Data-sharing Initiative (http 
://fcon_1000.projects.nitrc.org/) protocols. All data distrib-
uted via the ABIDE website were fully anonymized in com-
pliance with the HIPAA privacy rules, and no protected 
health information was included. Further details about this 
data set can be obtained from the ABIDE consortium website.

Preprocessing of the images

We preprocessed the imaging data using the Athena pipeline 
(www.nitrc.org/plugins/mwiki/index.php/neurobureau 
:AthenaPipeline). The 351 regions of interest (ROIs) considered 
as the graph nodes were defined using the functional parcella-
tion defined by the CC400 atlas.20 We identified 35 ROIs, in-
cluding the ventricles, using the Montreal Neurological Insti-
tute (MNI) atlas; these were removed, which left 316 ROIs. The 
average time series within the ROIs were considered to be the 
region representatives. Because participant head movement 
during MRI scanning is known to lead to spurious correlations 
between ROIs, we also analyzed the data by performing 
“scrubbing,” as previously described.21 From the initial data set 
of 908 participants, only individuals with a number of adequate 
scans greater than 100 after the scrubbing were considered.

Brain functional networks

A brain functional network can be modelled as a graph — a 
pair of sets G = (P, E), in which P is the set of ROIs (vertices), 
and E is a set of functional connectivities (edges) connecting 
the elements of P (ROIs). Thus, a brain functional network G 
with n ROIs can be represented by its adjacency matrix A 
with n × n elements Aij containing the “strength” of the con-
nectivity between the ROIs i and j. In the present study, the 
functional connectivity between 2 ROIs was obtained in the 
same manner described by Sato and colleagues22 (i.e., by cal-
culating 1 – the p value corrected for the false discovery rate 
[FDR]23 corresponding to the Spearman correlation, which is 
robust against outliers and can identify monotonic nonlinear 
associations). This nonparametric measure accomplished the 
same aim as, for example, the Fisher z- transformation of 
Pearson correlations in parametric cases. Site effects were 
modelled using a general linear model (GLM) in which site 
was a categorical variable, and the effect was removed based 
on the residuals of this model.

The dissimilarity matrix W with n × n elements Wij contains 
the “distance” between the ROIs i and j. The distance between 
2  ROIs is given by the corrected pFDR value obtained via 
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 Spearman correlation. Higher p values indicate less correlated 
pairs of ROIs. Notably, we did not use the correlation’s p value 
to assess significance; we used it only as a dissimilarity measure.

Graph FSC

The problem of clustering ROIs consists of identifying the 
partitions of the functional network in which the sets of ROIs 
are minimally connected but the ROIs within a module are 
highly connected.

The usual method for partitioning graphs is the spectral 
clustering algorithm.24 However, the spectral clustering algo-
rithm provides only “hard clustering” (i.e., each ROI belongs 
only to 1 cluster). Because in our study, we were interested 
in identifying the ROIs that were segregated into clusters 
(ROIs that may belong to more than 1 cluster — those that 
may be equally distant from 2 or more clusters) in autistic 
people and were not segregated in the controls, it was neces-
sary to develop a method that provided information about 
the level to which each ROI belonged to each cluster. One 
class of clustering algorithms that provides not only the clus-
tering label but also the weight with which each item be-
longs to each cluster is fuzzy clustering algorithms. Thus, we 
combined a fuzzy clustering procedure with the spectral 
clustering approach25 to partition the graph. The description 
of the proposed algorithm is as follows:

Input: Let W be the dissimilarity n × n matrix of a func-
tional brain network G with n nodes, and let k be the number 
of desired clusters.
1. Let D be an n × n diagonal matrix with the degrees  

d1, …, dn 

 

 

 in the diagonal.
2. Compute the Laplacian matrix L = D – W.
3. Compute the k eigenvectors u1, …, uk  of L corresponding to 

the smallest eigenvalues, k.
4. Let U be the n × k matrix containing the vectors  

u1, …,  uk  as columns.
5. For i = 1, …, n, let yi be the n-dimensional vector corres-

ponding to the ith row of U.
6. Cluster the points yi (i = 1, …, n) with the k-means algo-

rithm and use the obtained centroids as seeds in step 7.
7. Cluster the points yi (i = 1, …, n) with the unsupervised 

fuzzy competitive algorithm described by von Luxburg25 
and Lai Chung and Lee.26 Repeat this step for the desired 
number of times and save the step that produces the great-
est silhouette statistic.27 The silhouette statistic is used as a 
goodness of fit score for the clustering structure.
Output: an n × k matrix C and a vector w with length n.
The element Ci,j  (i = 1, … , n  and j = 1,…, k) of C repre-

sents the degree of the ith ROI to belong to the jth cluster 
(i.e., how much the ith ROI belongs to the jth cluster). Thus, 
each row of C sums up to 1. The integer vector w contains 
the label (the cluster index) of a “hard clustering” for each 
ROI. This “hard clustering” is obtained by wi = arg maxjCi,j  

for j = 1,…, k. In other words, the ith ROI is assigned to the 
cluster with maximal membership (index of Ci with the max-
imum value).

The number of clusters k was estimated according to the 
slope method. The slope method is based on the silhouette 
statistic proposed by Rousseeuw27 and identifies the maxi-
mum number of clusters that breaks down the structure of 
the data set.28 The slope statistic is the difference of the sil-
houette statistic as a function of the number of clusters. For-
mally, the number of clusters is estimated as 

= arg max
{ ,…, }

[ ( + 1) ( )] ( )  

where s(k) and s(k + 1) are the silhouette statistics for k and 
k + 1 clusters, and p is a positive integer value that gives 
more importance to s (k  +  1) – s(k) (small  p) or to the sil-
houette value s(k)  (large p). The difference between the 
slope and silhouette is the fact that by maximizing the sil-
houette statistic, the number of clusters is estimated cor-
rectly only when the within-cluster variances are equal. In 
the general case in which the within-cluster variances are 
unequal, maximizing the slope statistic yields the optimal 
number of clusters for separating the within-cluster and 
between-cluster distances.

Brain clustering analysis

After clustering the ROIs via the FSC algorithm, we were in-
terested in identifying those that were well clustered in one 
group and those that were segregated in another group. In 
other words, it was necessary to use a statistic on Ci,j that was 
invariant to the permutations of the clustering labels and was 
also able to discriminate the differentially segregated ROIs. 
To overcome these problems, we propose the use of Shannon 
entropy, which is defined as 

( ) =– , log ,  

for the labelling of the ith ROI.
To analyze our data set, we first calculated the Shannon 

entropy for each ROI for each participant. Notice that when 
the ith ROI was perfectly assigned to 1 cluster (well clus-
tered), we obtained the lowest entropy. In contrast, when the 
ith ROI was equally assigned with the same degree of be-
longing to all k clusters (segregated), we obtained the highest 
entropy (Appendix 1, Fig. S1, available at jpn.ca). In other 
words, the entropy represented how dubious an assignment 
of an ROI into a cluster was compared with the others.

Modularity

A global measure to quantify how well separated the ROIs 
were in the whole brain regarding the “hard clustering” 
structure obtained by the FSC algorithm is the modularity 
proposed by Clauset and colleagues.29 It is defined as follows: 
let m be the number of edges of the graph; n be the number of 
ROIs; Aij be the element of A, the n × n weighted adjacency 
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 matrix in the ith row and jth column; ki be the sum of weights 
of the adjacency edges for the ith ROI; wi and wj be the cluster 
labels of the ith and ith ROIs, respectively; and

( , ) =
1 if =     

0 otherwise
. 

Then, the modularity score is given by

 

This modularity measures the fraction of the edges in the 
network that connect vertices in the same cluster (within-
cluster edges) minus the expected value of the same quantity in 
a network with the same clustering structure but random edges 
between the vertices. Thus, zero modularity indicates that the 
number of within-cluster edges is no better than random. In 
contrast, values approaching 1 indicate strong clustering 
structures.30

The interpretation of this measure is that higher modular-
ity scores (Q) indicate more separated clusters (sets of ROIs).

Eigenvector centrality

In the previous section, we identified the regions associated 
with segregation. Here, we were interested in analyzing their 
“importance” (eigenvector centrality [EVC]) in the subnet-
work to which they belonged. Eigenvector centrality is usu-
ally regarded as a ranking measure. A node in the network is 
important if it is connected to other important (high EVC) 
nodes (Appendix 1, Fig. S2).31 The size of the nodes repre-
sents the EVC (i.e., the bigger the node, the higher the EVC). 
The thickness of the edges represents the strength of the 
functional connectivity among nodes.

The EVC can be obtained by calculating the eigenvector (x) 
associated with the largest eigenvalue (λ) in absolute value of 
the adjacency matrix A (i.e., the largest λ that satisfies λx = Ax). 
Assuming that the centralities are non-negative, it can be 
shown using the Perron–Frobenius theorem that λ must be the 
largest eigenvalue of A and that x is the corresponding eigen-
vector. Thus, the eigenvector centrality of ROI i is xi.

Statistical analysis

To test which ROIs exhibited differences in terms of mean 
Shannon entropies, mean modularities and mean EVCs be-
tween groups, we used a GLM with Shannon entropy, 
modu larity and EVC as response variables, and we tested the 
differences between groups (ASD v. control), including sex, 
age and frame displacement as covariates. For the Shannon 
entropy and EVC, we tested each ROI individually.

The p values obtained by testing the mean Shannon 
entropies were compared between the data sets with and 
without “scrubbing.” The ROIs that exhibited differences in 
these p values greater than 5% were excluded from our 
analyses. The remaining p values were corrected for multiple 
tests using the Bonferroni approach. The type I error was 
set at 5%.

Results

We included 814 children in our final analyses: 529 controls 
(mean age 17.47 ± 7.81 yr, 430 boys) and 285 patients with 
autism (mean age 17.53 ± 7.13 yr, 255 boys).

Data preprocessing

To compare the levels of head movement between the controls 
and the patients with ASD, we applied a GLM model with 
frame displacements due to age, sex and sites as covariates. 
The results indicated that the head motion artifact was signifi-
cantly greater in patients than controls (p = 0.004).

Number of clusters

One parameter of the FSC algorithm is the number of clusters 
k that was estimated using the slope method.28

The number of clusters was plotted against the slope 
statistic (Appendix 1, Fig. S3). The number of clusters k 
with the highest slope statistic is the estimated number of 
clusters by this method. In our data-driven analysis, the av-
erage functional brain network was basically composed of 
13 modules.

Clustering the brain regions

After defining the numbers of clusters as 13, the ROIs were 
clustered into modules (“hard clustering”) using the FSC 
(Appendix 1, Fig S4).

Similar to previously reported results regarding the use of 
standard spectral clustering with fMRI data,22 anatomically 
contiguous and homotopic regions were labelled as within 
the same clusters.

By applying the FSC algorithm independently for controls 
and patients with ASD, we obtained similar cluster structures 
(Appendix 1, Fig. S5). Figure S6 in Appendix 1 illustrates the 
boxplots of the average silhouette statistics for controls and 
patients with ASD by using the labels of the clustering ob-
tained by applying the FSC algorithm on the entire data set. 
The boxplots are similar, confirming the similarity obtained 
in Appendix 1, Figure S5.

Identification of the ROIs associated with autism

Finally, to identify the ROIs that were associated with autism, 
we calculated the Shannon entropy of the clustering weights 
(Ci,j) given by the FSC, and we applied a GLM with sex and 
age as covariates (see the Statistical analysis section). Exclu-
sion of the ROIs with differences in p values greater than 5% 
between the results with and without scrubbing resulted in 
98 ROIs for further analyses.

The 5 ROIs highlighted in Figure 1 illustrate those with 
p values that were significant at the threshold of 0.05 after 
Bonferroni correction for multiple tests. We observed that 
these ROIs included the motor, temporal and occipitotem-
poral cortices. Figure 2 illustrates the Shannon entropies for 
the 5 ROIs and suggests that the entropies were significantly 
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greater in the patients with ASD than in the controls (i.e., 
they were more segregated in the brain). Based on separate 
analyses by sex, we observed that these results were main-
tained for the boys but not for the girls. In other words, all of 
the 5 ROIs identified in this study were not statistically sig-
nificant for the girls at the threshold of 5%, even without 
Bonferroni correction. 

Additionally, we calculated the modularity of each partici-
pant’s brain functional network. The modularity of the net-
work given its clustering labels is a measure of how sepa-
rated the different ROIs are from each other.29 To compare 
the difference in modularity between the controls and pa-
tients with ASD, we applied a GLM that included both sex 
and age as covariates. The functional brains of the patients 
with ASD were less modular than those of controls (p < 0.001; 
Appendix 1, Fig. S7); the ROIs in the patients with ASD were 
less segregated than those in the controls. Modularity equal 
to zero (Appendix 1, Fig. S7) is due to brain networks with 
high quantity of edges with high weights. This network 
structure is similar to very sparse or totally random graphs 
in terms of modularity, since they present only 1 module. 
These results corroborate the findings shown in Figure 2 
that were obtained based on FSC and entropy analysis.

To understand the relevance and intracluster roles of the 
segregated regions, we compared the EVCs of the 5 regions. 
We calculated the EVCs for each participant considering only 
the subnetwork (cluster) to which they belonged. The appli-

cation of a GLM with sex and age as covariates revealed that 
the right precentral gyrus (p = 0.004), right occipitotemporal 
junction (p = 0.016) and left precentral gyrus (p = 0.001 and 
p = 0.007) exhibited significantly greater EVC in controls 
than in patients with ASD after Bonferroni correction for 
multiple tests (Fig. 3). The superior temporal gyrus (p = 0.36) 
did not exhibit a significant difference between the con-
trols and patients with ASD.

Discussion

In the present study, we applied graph modularity analysis 
with clustering entropy to resting state fMRI data from the 
ABIDE consortium to characterize the differences in the 
global organization of the functional brain connectivity in 
children with ASD. Our results revealed that the functional 
networks of the patients with ASD were disrupted in their 
modular organization relative to controls. Using clustering 
entropy, we identified spatially distributed regions in the 
motor, temporal and occipitotemporal cortices that were ab-
normal in their modular partitions in patients with ASD (i.e., 
nodes with increased uncertainty of grouping into functional 
communities in the ASD network). These findings suggest 
that differences in brain functional connectivity in patients 
with ASD are related to dysmodular organizations of the 
functional networks that are relevant for processing sen-
sorimotor and social cognitive information.

Fig. 1: Regions of interest (ROIs) that exhibited differential clustering entropies. The 5 statistically significant 
ROIs (p < 0.05, after Bonferroni correction) are depicted in different colours.
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Recent theoretical models have highlighted the need to 
consider the neural correlates of ASD in a system-level 
approach.1,32,33 Graph theoretical analysis of neuroimaging 
data uses measures of network topology to estimate brain 
complexity and make inferences about the 2 principles that 
have been proposed to rule the organization of brain systems 
to support cognition: the segregation of information flow into 
local network communities, and the functional integration 
of  this information within a modular architecture.34 In the 
present study, we used the modularity coefficient to dem-
onstrate that functional networks in patients with ASD are 
less segregated than in controls. Atypical segregation has 
previously been reported in patients with ASD in terms of 
functional15,35 and structural covariance networks derived 
from cortical thickness measures,17 although it was also 
shown that the network topologies were unaltered in terms of 
the structural networks generated from fibre tracts derived 
from diffusion tensor MRI in this population.15 Our finding of 
a less-clustered topology in the functional networks of 
patients with ASD thus agrees with those of previous studies 

and extends these findings via the use of clustering entropy to 
define the modules. The combination of the FSC and the 
statistical test based on Shannon entropy allowed us to 
identify the regions that were more segregated in the patients 
with ASD than in the controls. Our results, along with the 
previously mentioned work of others, thus further support 
the hypothesis that ASD is a brain-network disorder.4 Because 
the characteristic modular topology of the brain is thought to 
be functionally important because it enables the adaptability 
or evolvability of information processing within networks,36 it 
is possible that reduced specialization of large-scale 
neurocognitive networks in the processing of informa tion that 
is important for social communication may underpin the 
characteristic autistic behaviours and traits.

Our findings of decreased modularity in patients with ASD 
are indicative of a less differentiated functional modular brain 
organization. The increased entropy of the nodes in the mo-
tor, temporal and occipitotemporal cortices suggest that the 
functional networks involving these nodes could be less 
clearly delineated in patients with ASD. All of these network 

Fig. 2: Boxplots of the clustering entropies. The entropies were statistically higher (p < 0.05, after Bonferroni correction) in 
the patients with autism-spectrum disorders (ASD) than in the controls. This indicates that the functional brains of the pa-
tients with ASD were less modularized than those of the controls.
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components have been previously associated with the clinical 
hallmarks of ASD. For example, the motor cortex is part of the 
network that has been argued to be the basis of imitative and 
empathetic behaviour37 and has also been proposed to under-
pin ASD deficits in motor control, communication and social 
abilities.38 Finally, the superior and temporal gyri have been 
implicated in the processing of social perceptual cues, such as 
eye gaze, biological motion and the processing of actions.39 In-
terestingly, some of these regions, particularly those in the 
temporal heteromodal association cortex, have been identified 
as brain hubs that use network metrics of centrality.40,41 These 
hubs have important roles in functional integration.11 Abnor-
mal brain hubs in cortical regions similar to those highlighted 
in the present study have been previously described in func-
tional networks in patients with ASD.19,35 Moreover, our 
analy ses of intramodule EVCs demonstrated that the hierar-
chical organizations of the network were also different be-
tween the patients and controls. The centrality of the regions 
identified to have different segregations between the groups 
mirrored the roles of these areas in intramodule functional 

connectivity (integration). Therefore, our results further cor-
roborate the theoretical view that ASD, along with other ma-
jor psychiatric disorders, is a brain network disorder in which 
the balance between functional integration and the segrega-
tion of large-scale neurocognitive networks is altered.12,42,43

The biological mechanisms that generate the modularity-
based alterations in functional connectivity in patients with 
ASD observed in our study remain unknown. It has been pro-
posed that ASD, as a developmental disconnection syndrome, 
is associated with abnormalities in anatomic connectivity be-
tween specialized brain regions.32 Evidence for the existence of 
such anatomic dysconnectivity in patients with ASD comes 
from structural neuroimaging studies that have shown abnor-
mal white matter volumes and microstructural integrities and 
grey matter reductions in multiple spatially distributed brain 
regions.44,45 In contrast, the present results, combined with evi-
dence from previous functional neuroimaging studies of ASD, 
indicate abnormal integration and segregation between multi-
ple cortical regions,15,19,35,46 which implies the presence of under-
lying anatomic connection abnormalities. However, the precise 

Fig. 3: Boxplot of the eigenvector centralities. With the exception of the superior temporal gyrus, all of the other regions of 
interest exhibited significantly lower eigenvector centralities (p < 0.05, after Bonferroni correction) in the patients with 
 autism-spectrum disorders (ASD) compared with the controls.
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locations of the affected anatomic connections in patients with 
ASD and the associations between these structural abnormal-
ities and deficits in brain dynamics require further investigation. 
It is also important to consider that the suggested alterations in 
neurodevelopmental trajectories in patients with ASD may not 
only affect the neural architectures of isolated brain regions but 
likely also affect brain connectivity.47,48 For example, it has been 
shown that the brain nodes of the 2 functional networks related 
to human attentional control (i.e., the frontoparietal and cingulo-
opercular) are more segregated and integrated, respectively, 
with increasing age in a sample of children and adolescents.13 In 
this context, it is important to investigate the longitudinal 
changes in the modular organization of brain networks devoted 
to processing social cognitive information, and thus to identify 
the potential time windows that are crucial for system func-
tional specialization in the ASD population. Future studies that 
specifically target this issue are needed because the data set ana-
lyzed in our study (i.e., that from the ABIDE consortium) had a 
small childhood and middle adulthood sample size.

Limitations

The present study has some methodological limitations. The 
ABIDE data set was acquired in 19 sites with considerable 
heterogeneity in the fMRI acquisition protocols, including 
differences in scanner types, pulse sequences, scan durations 
and resting-state protocols (i.e., eyes opened/closed). More-
over, the sites differed in many variables related to sample 
characterization, including age, IQ and ASD diagnostic criter ia. 
Data analyses carried out independently in each site did not 
present statistically significant ROIs, even before correcting 
the p values for multiple tests. This was likely because of the 
lack of statistical power generated by low sampling. Notice 
that the data set is composed of 814 individuals, only 285 of 
whom were patients with ASD. Thus, on average there were 
only 15 patients per site (there were sites without patients). 
Therefore, we cannot rule out the possibility that additional 
differences in functional network organization would be 
found in a more homogeneous sample of individuals with 
ASD. However, the use of a large multicentric and public 
fMRI database can be advantageous in terms of improving 
the external generalizability of novel results and replica-
tion.19 Additionally, the use of complex network analysis 
with graph theory is particularly suitable for highly hetero-
geneous ASD populations because it does not require as-
sumptions about specific brain networks or regions. Regard-
ing the fuzzy clustering approach, there are at least 2 points 
to be analyzed in a future study. First, it is important to 
highlight that the hard assignment of each node to its mar-
ginal maximum value may not be the optimal hard assign-
ment. Second, results depend on which clustering algorithm 
is applied because different algorithms may generate differ-
ent clustering structures. Our study contributes to a more 
comprehensive understanding of the altered brain functional 
organizations of spatially distributed large-scale cognitive 
networks in patients with ASD. Finally, the fact that our 
findings were maintained for the boys but not for the girls 
may have at least 2 explanations: it may be that there are no 

differences in the brain regions identified in this study in 
girls, or it may be that because the number of girls was 
much lower than the number of boys (only 15% of the par-
ticipants were girls), there was insufficient statistical power 
to identify the brain regions. 

Conclusion

Our results suggest that the organization of the whole-brain 
functional network in patients with ASD is different from that 
observed in controls based on the reduced modularity of the 
brain functional networks devoted to processing sensorimo-
tor, social affective and cognitive information. These findings 
may contribute to the concept of ASD as a neural systems dis-
order, which requires further verification via the combination 
of neuroimaging data with other putative ASD phenotypes.
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